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SUMMARY

Presently, improving the accuracy and reducing computational costs are still two major CFD objectives
often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive
mesh re�nement method in order to integrate the 3D Euler and Navier–Stokes equations on structured
meshes, where a local multigrid method is used to accelerate convergence for steady compressible �ows.
The time integration method is a LU-SGS method (AIAA J 1988; 26:1025–1026) associated with a
spatial Jameson-type scheme (Numerical solutions of the Euler equations by �nite volume methods
using Runge–Kutta time-stepping schemes. AIAA Paper, 81-1259, 1981). Computations of turbulent
�ows are handled by the standard k–! model of Wilcox (AIAA J 1994; 32:247–255). A coarse grid
correction, based on composite residuals, has been devised in order to enforce the coupling between
the di�erent grid levels and to accelerate the convergence. The e�ciency of the method is evaluated
on standard 2D and 3D aerodynamic con�gurations. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the constant progress in numerical methods and the power of new computers,
improving the accuracy and reducing computational costs are still the two major objectives
of CFD. These objectives are often considered incompatible. Nevertheless, adaptive mesh
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re�nement methods (AMR) seem to overcome this incompatibility by reaching a good com-
promise between computational costs and accuracy.
Most of the compressible �ows are characterized by structures which have di�erent length

scales such as shocks, contact discontinuities, viscous layers, vortices, etc. Then, the smallest
scale governs the number of grid points in the meshing process and if the whole domain is
re�ned uniformly this can lead to a large number of cells.
Aerodynamicists from AIRBUS France aircraft manufacturer study complex 3D con�gu-

rations of airplanes (bodies + wings + pylons + nacelles + · · ·) with structured meshes. They
are penalized by the computational costs associated to the increase of grid points. To avoid
this problem, they look towards AMR techniques to locally adapt the mesh size to di�erent
structure scales. In fact, if successfully integrated in a production code, such a technique could
perform numerical simulations of high quality at a reasonable computational cost.
Nowadays, several techniques allow to locally increase the grid point density thanks to

local �ow properties. Firstly, the main coarse mesh can be enriched itself thus leading to
an unstructured mesh approach [1, 2]. Secondly, in case of numerical methods based on a
structured approach, the initial coarse mesh can be enriched with new meshes generated from
that basic coarse one. As a consequence, they are nested one in another and are ordered into
levels. Each level is built by dividing some cells belonging to meshes of the lower level.
Thus, a Hierarchical Structure of Meshes results from these successive re�nements.
The earliest researches in this �eld have been realized by Berger and Collela [3] who have

�rst developed cartesian AMR methods for solving 2D unsteady �ows in the case of detonic
problems. For 2D steady �ows, Brandt [4] has developed multi-level adaptive techniques.
Recently, an article [5] has introduced a second-order unsplit Godunov method with local
time stepping for 2D Euler steady equations as a continuation of the work in Reference [6].
More recently, a 3D AMR method has been applied [7] for the computation of wake vortices.
Here, this method was improved in order to accelerate the convergence strategy.
The aim of this work is to develop, implement and assess a multigrid-AMR method in an

industrial code. Our contribution consists in adapting the multigrid technique for embedded
meshes in the context of the compressible 3D turbulent Navier–Stokes equations for steady
transonic �ows. This multigrid-AMR method has been developed in the elsA|| software [8].
The 3D Navier–Stokes equations are solved to steady-state using the second-order centred
Jameson scheme [9] and the LU-SGS [10] implicit time integration method, with local time
stepping. The automatic grid adaptation process is performed outside the solver by the Mbref
utility program developed by AIRBUS France on the basis of the algorithms proposed by
Quirk [11].
The paper is organized as follows. In Section 2, the classical governing equations and the

elsA solver are introduced. The principles for creating embedded meshes using successive
re�nements are presented in Section 3. First, the topology chosen for such meshes is exposed
introducing the map of interface connectivities. The de�nition problem of boundary conditions
is addressed. Then, the re�nement process is described. Section 4 deals with the most important
part of this study. The extension of the multigrid technique, as means of coupling the di�erent
levels of re�nement, is exposed as a 3D generalization of the method introduced by Borrel

||French acronym, ensemble logiciel pour la simulation en A�erodynamique, which means aerodynamic simulation
software package.
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MULTIGRID ADAPTIVE MESH REFINEMENT 369

and Jouhaud [12–14]. Section 5 addresses the question of parallel computing in relation
with the AMR approach. Indeed, AMR mesh integration on several processors requires an
elaborated strategy since some domain interfaces are non-coincident and the distribution of
blocks on processors is not trivial. In Section 6, the method is validated on several test-cases
representative of aerodynamic problems with a focus on the ratio cost/accuracy.

2. GOVERNING EQUATIONS AND FLOW SOLVER

2.1. Navier–Stokes equations

The governing equations are the 3D Navier–Stokes equations which describe the conservation
of mass, momentum and energy of a viscous �uid �ow. Using Cartesian co-ordinates, these
equations can be expressed in a conservative form as follows:

@W
@t
+∇ · F =0 (1)

The state vector W and the �ux F =Fe − Fv decomposed in an inviscid and a viscous part
are given by

W = [�; �U; �E]T

Fe = [�U; �U ⊗U+ p ��I ;U(�E + p)]T

Fv = [0; ���;U · ���− q]T
(2)

where � is the density, U the velocity, p the pressure and E the total energy. For a Newtonian
�uid, the shear stress tensor ��� is given by

���=�(∇U+ (∇U)T) + �∇ ·U ��I (3)

with � the dynamic viscosity and � the second coe�cient of viscosity. The Stokes’ assumption
reduces the Lam�e’s relation to 2�+ 3�=0. The heat �ux q is given by Fourier’s law

q= − KT∇T (4)

with T the temperature and KT the thermal conductivity coe�cient. The dynamic viscosity �
is given by the Sutherland’s formulae

�=�0

(
T
T0

)3=2 T0 + Cs
T + Cs

(5)

where �0 is the dynamic viscosity at the reference temperature T0 and the constant Cs equals to
110:3K. With a constant Prandtl number, the heat conductivity can be written as KT =�Cp=Pr
with Cp the speci�c heat at constant pressure and Pr=0:72 for air. For a caloric perfect gas,
the state equation is given by p=�RT where the gas constant R is equal to 287 (J=kg K)
for air.
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2.2. Wilcox k–w turbulence model

The k–! model equations are given by system (6)

@�k
@t

+∇ · (�kU)− ∇ · ((�+ �k�t)∇k) = Pk − �k�!k
@�!
@t

+∇ · (�!U)− ∇ · ((�+ �!�t)∇!) = �!!k Pk − �!�!2
(6)

with the production term Pk = � · ∇U, the eddy viscosity �t =�k=!, the closure coe�cients
�k =0:5, �!=0:5, �k =0:09, �!=0:075, �!=0:5, k the turbulent kinetic energy and ! the
speci�c turbulent dissipation.

2.3. Flow solver

The elsA software [8] is the platform used in the present study. It has been initiated at ONERA
and aims at gathering a very large range of CFD capabilities in a software package to tackle
industrial problems as well as becoming a platform for further innovative CFD developments.
It is included in an object-oriented framework to ease software management and is operational
in the AIRBUS production environment and in the CERFACS research environment since the
beginning of year 2004.The elsA code solves the 3D turbulent compressible Navier–Stokes
equations using a cell-centred �nite-volume method.
Integrating Equation (1) over a domain � and applying Green’s divergence theorem yield

the following integral form:
∫
�

@U
@t
dV +

∮
@�
F · n dS=0 (7)

with n the outward normal of the boundary @� of the control volume �. The separated
time/space discretization process leads to the following delta form:

A�Un+1 = − �t
|�| R(U

n) (8)

where the residual R comes from the space discretization and depends on the conservative
variable �eld Un. The Jacobian matrix A comes from the implicit time discretization and
�Un+1 =Un+1 −Un corresponds to the �eld correction also called the time increment.

3. HIERARCHICAL STRUCTURE AND BOUNDARY CONDITIONS

3.1. Hierarchical structure de�nition

The AMR method is based on a physical space discretization of relevant �ow regions thanks
to the several meshes built by successive re�nements. At the beginning of the process, only the
coarsest mesh is given by the user. It is called the basic mesh G0 since it remains unchanged
upon all computation. Most of the time, this mesh is a very rough discretization of the
entire problem domain. Nevertheless, it should allow a �rst approximation of the solution
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in order to start the re�nement process. Then, di�erent parts of the basic mesh are re�ned
depending on some criteria based on the �ow solution. The same area might be successively
re�ned several times. Once a level has been created, then it cannot be altered by the next
re�nement step. In the following, cells are divided by two in each space directions. Thus,
the computational domain becomes more and more re�ned and this set of embedded meshes
is called a hierarchical structure of grids. If the present re�nement level is noted l and the
corresponding grid Gl, the hierarchical structure G can be de�ned as follows:

G=
l=lmax⋃
l=0

Gl with Gl= ∪i Gl; i where Gl; i are blocks

3.2. Topological properties

To ensure a coherence, a mesh structure G (cf. Figure 1) must respect some fundamental
topological rules that can be sum up by the Properly Nested properties [14]:

1. Inclusion of di�erent levels: Gl ⊂ Gl−1; ∀l 16l6lmax
2. Non-overlapping of blocks belonging to a same level: Gl; i ∩Gl; j= ∅ when i �=j
3. Cells from a block Gl; i of the set Gl, which are next to a border interface excluding
physical boundary conditions, must not have adjacent cells belonging to a set Gk with
l+ 1¡k or k¡l− 1.

The �rst rule ensures the successive nesting of grids, i.e. the gradual basic mesh enrichment
with �ner meshes.
The second rule is a standard choice that prevents grids from overlapping, which is very

expensive in computation time and memory storage. However, its not the only choice possible,
in particular, when working with rotating embedded meshes [3].
The third rule leads to a gradual distribution of re�nement zones from the coarsest to the

�nest. The di�erence between the re�nement levels at border interfaces of blocks should not
be greater than one. It avoids numerical instabilities and accuracy issues by preventing too

1

2

3

Figure 1. Properly Nested hierarchical structure.
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Fine

Fine Coarse

Fine

Figure 2. Fine/�ne and �ne/coarse interfaces.

large di�erence in cell sizes at interfaces between two blocks of di�erent level [15]. However,
it permits a �ner and �ner re�nement near boundary conditions.

3.3. Block boundary conditions

The boundary conditions of blocks are implemented thanks to two rows of ghost cells. This
is su�cient for the fourth-order term of the scalar arti�cial dissipation scheme used. This
classical treatment allows to generalize the �ux calculation at all cell interfaces.
Values in ghost cells are calculated at each iteration from interior cells of the neighbouring

blocks. Due to the Properly Nested properties, three kinds of block border interfaces can
appear:

• a classical physical boundary condition,
• a �ne/�ne interface connection,
• a �ne/coarse interface connection.
The �ne/�ne interface connections are coincident connections (cf. Figure 2) between two

blocks at the same level of re�nement. Mesh lines are continuous across the interface. In this
case, ghost cells of one block are �lled with the corresponding opposite cell values (interior
cells of the neighbouring block).
The �ne/coarse interface connections (cf. Figure 2) are partially coincident connections

between two blocks at a di�erent level of re�nement. One mesh line over n is continuous
across the interface. A trilinear interpolation is used to set the ghost cell values of the �ne
block from the overlapped cell values of the coarse block.

3.4. Automatic block construction

The mesh adaptation is performed in order to re�ne regions of interest (shocks, boundary lay-
ers, etc.). AIRBUS France has developed a suite called GAME∗∗ which includes an automatic
mesh adaptation tool named Mbref and a CFD solver. This suite is able to automatically re�ne
the mesh from the �rst results obtained on the basic coarse mesh. The Mbref tool adapts the
mesh to the �ow solution by introducing blocks in relevant regions detected by �ow sensors
(cf. Figure 3). It also projects new nodes on CAD surfaces when necessary.
In fact, the Mbref tool o�ers several sensors based on numerical or physical criteria. For

instance, in a transonic �ow context, the following physical sensor is used to detect shocks

∗∗Grid adaptation by mesh enrichment.
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final solution
hierarchical grid structure

1st elsA computation
basic mesh solution

MBref:

ADAPTATION

load balancing

iteration until lmax

elsA computations

Figure 3. GAME computational suite.

and compression zones at leading edge. It is based on an estimation of the density gradient
using the � coe�cient [11] for each cell

�=
‖−−→
grad(�)‖

max(‖−−→
grad(�)‖)

After the �rst computation on the basic mesh G0, � is calculated for all cells. If its value
is greater than a critical �0 value then cells are �agged to be re�ned. Then, the smallest
block that could contain all cells is determined. If the ratio of the number of �agged cells
over the total number of cells in this block is greater than a de�ned value, then it is created,
otherwise the block is divided by two along the largest topological direction. Then, the process
is repeated for the two blocks until convergence. This form-recognizing process is called
Grouping/Clustering Algorithm and it has been fully described by Quirk [11].

4. MULTIGRID AND AMR

The classical AMR method, i.e. the method developed by Berger and Collela [3] or Quirk
[11], is valid only for unsteady �ows. So, its no more valid for steady �ows because the
convergence is not guaranteed. In case of 2D steady �ows, Dannenho�er and Baron [16] have
tried to combine AMR and multigrid methods. In fact, multigrid methods aim at coupling and
accelerating di�erent grid resolutions for steady �ows. Then, this is a good choice to adapt
them for local mesh re�nement.
In the following, a 3D local multigrid technique, which represents an extension from

Brandt’s standard full approximate storage (FAS) algorithm [4, 17] is proposed. Based on
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a multigrid approach, this technique [12–14] couples the di�erent AMR levels in order to
accelerate the convergence to steady state.

4.1. Description of the local multigrid approach (local forcing function)

The following description is based on Jameson’s formulation [6, 18] (formulation of Brandt’s
standard FAS for compressible �ows) where the coarse grid solution is driven by the residual
computed on the �ne grid, through a residual forcing function.
Contrary to the standard case where all grids cover the whole computational domain, in

our case, the portion of physical space covered by successively �ner grids G1; : : : ; Glmax gets
reduced. Thus, the classical restriction and prolongation operators need to be rede�ned. In
order to link the multigrid method with the AMR method, a local forcing function is intro-
duced to allow a local formulation of Jameson’s FAS. This local forcing function modi�es
coarse block residuals by constructing the so-called composite residuals.
Let us consider two properly nested grids Gl and Gl−1. The equation to solve on the �nest

grid Gl can be written in a delta-form (8) as follows:

Al�Un+1
l = − �tl

|�l| Rl(U
n
l ) (9)

with �Un+1
l =Un+1

l −Un
l .

(a) Equation (9) is �rst solved. Starting with the increment �Un+1
l , a new solution is com-

puted: Un+1
l =�Un+1

l +Un
l and the new residual Rl(U

n+1
l ) is calculated. Then Un+1

l and
Rl(Un+1

l ) are locally restricted on the grid Gl−1 thanks to a local conservative restriction
operator T l−1l from level l to level l-1 as

Un+1
l−1 |Ml−1

= T l−1l U n+1
l (10)

Rcl−1 = T
l−1
l Rl(Un+1

l ) (11)

where Ml−1 is the subset of cells from Gl−1 that have been re�ned. The main di�erence
with the classical FAS algorithm is that the projection of Un+1

l and Rl(Un+1
l ) is only

local. Thus, Rcl−1 is only de�ned on Ml−1 and T l−1l U n+1
l is only a part of the present

solution on Gl−1 that can be called U ∗
l−1.

(b) For the grid Gl−1, a local forcing function is de�ned on Ml−1 as

Cl−1 =Rcl−1 − Rl−1|Ml−1
=T l−1l Rl(Un+1

l )− Rl−1(Un+1
l−1 )|Ml−1 (12)

Then, a composite residual Rcompl−1 (U
∗
l−1) has to be built on Gl−1. This residual has two

de�nitions depending on whether it is built on re�ned cells or not:

Re�ned cells Rcompl−1 |Ml−1
= Rl−1(U ∗

l−1)|Ml−1
+ Cl−1 (13)

Non-re�ned cells Rcompl−1 |(Gl−1\Ml−1)
= Rl−1(U ∗

l−1)|(Gl−1\Ml−1)
(14)
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Equation (13) is the classical FAS formulation. By now, the composite residual of
the grid Gl−1 is de�ned on every cell. So Equation (15) has to be solved on level
l− 1

Al−1�Un+2
l−1 = − �tl−1

|�l−1| R
comp
l−1 (15)

Its important to notice that the composite residual leads to the conservation of physical
quantities between grid levels. In fact, this composite residual is composed of terms only
depending on residual formulations: restriction of �ne residuals or computation of local
residuals. Furthermore, a re�uxing procedure permits to perform a �ux balance at all
�ne/coarse interfaces. It consists in imposing the �ne–coarse interface �uxes (coarse cell
part) by summing the �ne �uxes (�ne cell part).

(c) The last step is the prolongation from coarse to �ne grids. It is a local implementation
of the traditional way up in the V-algorithm, i.e. the local prolongation Pl−1l from coarse
level l− 1 to �ne level l

Un+2
l−1 =�U

n+2
l−1 +U

n+1
l−1 (16)

Un+2
l =Un+1

l + Pll−1(U
n+2
l−1 |Ml−1

−Un+1
l−1 |Ml−1

) (17)

In the following, steps (a)+(b) will be called the AMR1 method, and the AMR1 method
with step (c) will be called the AMR2 method. The di�erence between the AMR1 and AMR2
methods has been introduced to follow the implementation progress. Indeed, the AMR1 method
does not contain prolongation steps. For that reason, this method could not be considered as
a multigrid method but in the case of local mesh re�nement, it is the �rst step to couple the
resolution between levels as shown in Reference [7]. It should be emphasized that the AMR1
and AMR2 methods converge towards the same solution. The only di�erence concerns the
convergence rate as shown in Section 6.
This multigrid AMR method can be generalized to every number of level and every kind

of cycles (V,W, etc.). The restriction operator is a simple volume-weighted average. The
prolongation operator is a classical node-to-cell trilinear interpolation [8].

4.2. Local multigrid, global multigrid (GMG) and AMR framework

In this paper, a di�erence is made between the local multigrid (AMR framework) and the
standard global multigrid (GMG) where the coarse meshes generated from the basic mesh
cover the entire computational domain.
The AMR+GMG computation consists �rst in computing a solution on the basic coarse

grid G0 (with the standard global multigrid) without any re�nement. As long as characteristic
�ow structures do not appear on G0 or are not stabilized, there is no reason to re�ne: sensors
could needlessly re�ne unimportant regions. This is also why the basic coarse mesh must be
carefully de�ned in order to capture the viscous e�ects in turbulent con�gurations. However,
a full convergence does not necessarily need to be reached since the coarse grid solution will
be modi�ed by the coupling with re�nement levels.
After that, for each new level created (Mbref tool), the initial solution is de�ned by

prolongating the solution of the last coarser level (cf. Figure 4). Then, the AMR+GMG

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:367–385
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Mbref
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Figure 4. AMR multigrid cycle de�nition.

method is applied between the �nest grid and the coarsest grid (coarsening of G0). This is
repeated until the �nest re�nement is reached.
In the following, an AMR computation do not take into account a coarsening of the basic

grid G0 but only the re�ned levels.

5. PARALLELIZATION OF THE LOCAL MULTIGRID AMR METHOD

The code parallelization is a key point for industrial applications. Much attention has to be
paid to get good speed-ups. One of the main point for the local multigrid AMR approach is
to distribute the blocks according to their levels otherwise this may cost a lot of CPU time
and be very complex to implement.
In addition to the properly nested properties two further rules have been imposed to make

the implementation of parallelization easier and e�cient:

• the �rst one speci�es that a block Gl; i cannot overlap two blocks of level l− 1. It must
be entirely included in the block from which it has been generated: Gl; i ⊆ Gl−1; j. This
rule is also applied sequentially to ensure consistency in the code implementation.

• the second rule imposes the constraint that each block must be placed on the same
processor than the block in which it is included. In other words, a block must always
stay with its ‘relative’.

As a consequence these two rules enable to avoid exchanging huge amount of volumic data
between processors during the prolongation and restriction steps. Thus, only surfacic data are
exchanged between processors to update ghost cells at the border interfaces of the blocks.
On the other hand, the load balancing could deteriorate. In fact, as these rules are also

included in the load-balancing tool this aspect is not really important for complex geometries
that contain many blocks. In our cases which include only two basic coarse meshes, this is the
worst case that can occur since only two processors can be used following the two previous
rules. When the �ne levels are added to the initial con�gurations then the load-balancing
becomes imperfect. These are the reasons why no speed-up �gures will be presented.
Nevertheless it should be noticed that the performances on AMR con�gurations are expected

to be the same as on other AMR-free con�gurations as long as the load-balancing is excluded

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:367–385



MULTIGRID ADAPTIVE MESH REFINEMENT 377

from the analysis. No speci�c parallel operations are done by the AMR implementation thanks
to the rules introduced.

6. NUMERICAL RESULTS

In this section, the local multigrid AMR method has been validated on standard con�gurations.
The following test cases have been considered: a 2D Euler transonic �ow around a NACA0012
airfoil, a 3D Euler transonic �ow around an AS28 wing and a 2D turbulent �ow around a
RAE2822 airfoil. In particular, our attention was focused on the CPU time savings and the
accuracy. For all these computations, the classical second-order central scheme of Jameson
[6] is used with the LU-SGS time implicit integration method [10] as the smoother on the
�ne meshes and as the solver on the coarsest meshes.
A 5-point V-algorithm has been chosen for the local/global multigrid since all computations

were performed with two levels of re�nement. Two iterations are performed on all grids except
on the �nest one. Re�nements are always isotropic that is to say each coarse cell is divided
by two in each space direction to give eight �ne cells in 3D.
All computations have been performed with the parallel mode on with two processors in

order to test the good behaviour of the AMR functionalities. Nevertheless, to compare precisely
the CPU times the results presented in the paper are the ones of a sequential version.
The residuals showed on the �gures are computed by taking into account all the meshes

except these coming from the global multigrid (coarsening of the basic mesh).

6.1. Transonic Euler �ow around a NACA0012 airfoil

The transonic Euler �ow around the NACA0012 airfoil is considered with the Mach number
M∞=0:85 and the angle of attack �=1◦. The �ow has two supersonic zones with a strong
shock on the upper surface and a weaker one on the lower surface. The accuracy of the
solution is evaluated on the basis of the pressure coe�cient distribution.
The initial basic mesh is made of two structured C-mesh containing 108× 38 cells

each, which represents a quite coarse space discretization and the �nal composite mesh (see
Figure 5) with two levels of re�nement contains 24 620 more cells. Computations have been
performed on a Compaq alpha-server computer.
The solutions obtained on the basic coarse mesh and the two �ne levels are shown in

Figure 6. The improvement in the prediction of the shock thickness can be clearly seen. This
is con�rmed by the distribution of the pressure coe�cient plotted in Figure 8.
The convergence histories in Figure 7 show the better convergence rate of the AMR2

compared to the AMR1 due to the e�ect of the prolongation. The addition of a coarsening
of the initial basic mesh (AMR+GMG) is even more e�cient. The evolution of the lift and
drag coe�cients is plotted in Figure 9 which shows that they converge faster to their �nal
values for the AMR2 compared to the AMR1, and even faster if a coarse global multigrid
mesh (AMR+GMG) is added.

6.2. Transonic Euler �ow around an AS28 wing

The transonic Euler �ow around an AS28 wing designed by AIRBUS France is considered
with the Mach number M∞=0:80 and the angle of incidence �=2:2◦. Three di�erent meshes

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:367–385
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Figure 5. NACA0012, two-level mesh hierarchy.

Figure 6. NACA0012, Mach number contours on levels 0, 1 and 2.

are considered for this con�guration and showed in Figure 10: an initial coarse mesh con-
taining 28 000 points, a composite mesh with the basic mesh and two levels of re�nement
containing 502 084 nodes and a globally re�ned mesh which contains 1 626 690 nodes. Com-
putations have been performed on the Fujitsu VPP5000 supercomputer of M�et�eo France.
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Figure 9. NACA0012, evolution of the lift and drag coe�cients.

Figure 10. AS28, from left to right: the basic coarse mesh, the two-level AMR mesh �rst
re�nement and the globally re�ned mesh.

Figure 11 represents the Mach number contours on the basic mesh and the di�erent levels
of re�nement for the AMR computation. It shows the better representation of the shock on
the �nest mesh.
An important point is to know whether the accuracy of the multigrid AMR solution is

closed to the �ne case or not. Figure 12 points out the slight di�erences between the two-
level AMR mesh solution and the globally re�ned mesh solution. The results are quasi-similar
except for the shock location, which is better observed with the wall distributions of pressure
coe�cients for sections x=8 and 13 in Figure 14. The shock location predicted with the two-
level AMR method slightly di�ers from the one predicted with the �ne grid. This behaviour
has already been explained in the past [12]. It usually corresponds to the strong in�uence of
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Figure 11. AS28, Mach number contours on the basic mesh and on the two levels.

Figure 12. AS28, Mach number contours, di�erences between the two-level AMR mesh (left part) and
the globally re�ned mesh (right part).

the far�eld boundary conditions in transonic �ows. In fact the globally re�ned mesh o�ers 64
times more points of discretization at the far�eld boundary conditions than the AMR mesh
since there are no re�nements at these boundaries (see Figure 10). This explains the di�erent
shock locations.
The convergence rates are presented in Figure 13 for the AMR (AMR), for the basic coarse

mesh (coarse) and for the globally re�ned mesh (�ne). It can be noticed that they are similar
for the coarse mesh and the AMR mesh. The space discretization being the same at far�eld
boundary conditions for the AMR and the coarse meshes, it is not surprising to observe the
same convergence rate. Since the in�uence of the far�eld boundary conditions is strong in
transonic �ows, the coarse mesh seems to pilot the convergence of the whole computation.
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Concerning CPU times, the globally re�ned mesh takes 19 540 s to converge against 5290 s
for AMR, i.e. a factor of 3,6 time saving.
This case is representative of the aerodynamical con�guration usually encountered. In par-

ticular, the re�nement rate is typical of such con�gurations. Then it can be supposed that the
above CPU time results can be extrapolated to other con�gurations.
It can be predicted that for a mesh of 1 000 000 points, a standard computing without

re�nement strategies takes approximately 3:8 s per iteration whereas the AMR strategy takes
around 7:5 s per iteration. This means that the CPU time overhead of the AMR method is
nearly of a factor 2. But the number of points needed is around three times less and above
all the convergence rate is improved.
Furthermore a decrease of a factor 2.5 in the memory size requirement of the AMR method

has been noticed compared to the global re�ned case. This factor is close to the factor 3 of
the point reduction.

6.3. Transonic turbulent �ow around a RAE2822 airfoil

The RAE2822 airfoil turbulent con�guration has been considered with the k–! turbulence
model. This is a transonic �ow at M∞=0:73 and 2:79◦ angle of attack. This �ow is char-
acterized by a supersonic zone with a shock on the upper surface. As for the NACA0012
airfoil, the solution accuracy is measured through the distribution of the pressure coe�cient.
Calculations were run on a SGI Origin2000 computer.
The initial basic mesh has 183 616 cells, which is already a quite �ne space discretization.

Indeed the basic mesh takes into account the viscous e�ects to get a �rst approximation
of the solution in order to start the re�nement process. Figure 15 shows the mesh as well
as the Mach number contours and Figure 16 shows the convergence history of a two-level
computation. Pressure coe�cient distributions on the airfoil are plotted for all grid levels in
Figure 16. It can be noticed that computations are in good agreement with experimental data
with only few discrepancies. The shock is clearly better represented on the �nest level 2 due
to the local mesh re�nement. This case allows the validation of the multigrid AMR method
for Reynolds average Navier–Stokes equations.

Figure 15. RAE2822, the two-level mesh and Mach number contours.
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7. CONCLUSION

In this paper, a local multigrid method combined with an AMR strategy has been developed
to compute steady solutions in the elsA software. The convergence was accelerated with local
time stepping. A Jameson’s scheme has been used for spatial discretization and a LU-SGS
implicit method for the time integration. The k–! model of Wilcox has been implemented to
compute turbulent �ows in an AMR framework but the extension to other turbulence models
is straightforward.
Three test cases were run for external transonic �ows over NACA0012 and RAE2822

airfoils, and an AS28 wing. The results show that the AMR method signi�cantly reduces the
number of points needed and that it preserves nearly the same accuracy as with the �ne mesh.
Therefore, computational cost and memory storage are reduced, which is very promising for
the intensive use of CFD in aircraft design at AIRBUS France.
The re�nement process should be improved to enable a more �exible mesh generation and

more intensive testing should be made in parallel to assess the e�ciency of the implementation
on complex con�gurations. Other turbulence models should be tested, also with a coarser initial
mesh than the one used in the RAE example.
AMR+GMG (cf. 4.2) performs well on Euler equations. It has still to be improved for

viscous �ows since the turbulence equations are currently solved on all levels but it would
probably be better to only restrict the viscosities (no treatments of turbulence equations) on
the coarse grids generated from the basic mesh.
It should be kept in mind that multigrid AMR is e�cient to solve multi-equations since

equations can easily be switched depending on the re�nement level or the block locations. So
di�erent physical models could be applied depending on the grid levels. Furthermore, di�erent
numerical schemes could be combined in order to capture local structures better (for example,
high-order schemes only on the �nest grid).
Another point is to study the extension of this method to multilevel-based scale-similarity

model for LES simulation [19].
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